The Sand Filter
The typical sand filter is a PVC-lined or concrete box filled with a specific sand material. A network of small diameter pipes is placed in a gravel-filled bed on top of the sand. The septic tank effluent is pumped under low pressure through the pipes in controlled doses to insure uniform distribution. The effluent leaves the pipes, trickles downward through the gravel, and is treated as it filters through the sand. A gravel underdrain collects and moves the treated wastewater to either a second pump chamber for discharge to a pressure distribution drainfield or to a gravity flow drainfield. The second pump chamber may be located in the sand filter.

The Drainfield
The drainfield receives the treated sand filter effluent for disposal. It has a network of pipes placed in gravel-filled trenches (2-3 feet wide) or beds (up to 10 feet wide) in the soil. The effluent leaves the pipes, trickles downward through the gravel, and into the soil. Every new drainfield is required to have a designated replacement area. This area is similar to the size of your existing drainfield. It must be protected should the existing system need an addition or repair.

To Properly Care for a Sand Filter and Drainfield:
1. Know where your system and replacement area are located and protect them from damage. Before you plant a garden, construct a building, or install a pool, check on the location of your system and replacement area.
2. Practice water conservation and balance your water use throughout the week to keep from overloading the system. The more wastewater you produce, the more wastewater the sand filter and soil must treat and dispose. You can reduce your water use by installing water-saving devices, repairing leaky plumbing fixtures, taking shorter showers, and washing only full loads of dishes and laundry.
3. Divert water from surfaces, such as roofs, driveways, or patios away from the system and replacement area. Soil over your system should be slightly mounded to help surface water runoff. Sprinkler systems do not belong in the area of the sand filter or drainfield.
4. Keep traffic such as vehicles, heavy equipment, or livestock off your system and replacement area. The pressure can compact the soil or damage pipes.
5. Landscape your system properly. Do not place impermeable materials over your system or replacement area. Materials such as concrete or plastic reduce evaporation and the supply of air to the soil needed for proper effluent treatment. Grass is the best cover for your entire system.
6. Periodically inspect the sand filter and drainfield areas for odors, wet spots, or surfacing sewage. Check your system’s inspection pipes regularly to see if there is a liquid level continually over 6 inches. This may be an early indication of a problem. Call your local health agency for assistance.

Additional information is available from the following Department of Health publications:
Intermittent Sand Filter Systems - Recommended Standards and Guidance for Performance, Application, Design, and Operation and Maintenance, DOH 337-007
www.doh.wa.gov/Portals/1/Documents/Pubs/337-007.pdf
Understanding And Caring For Your Septic Tank System DOH 337-086
here.doh.wa.gov/materials/understanding-and-caring-for-your-septic-tank-system
Water Conservation Guidelines to being Waterwise DOH 331-120
On-Site Sewage System Regulations, Chapter 246-272A WAC
apps.leg.wa.gov/WAC/default.aspx?cite=246-272A

These are available from your county health agency or by writing to:
Washington State Department of Health Wastewater Management Section
PO Box 47824
Olympia, WA 98504-7824

Other sources of information include your:
Local Health Agency
Soil Conservation Service Office
Cooperative Extension Office

Washington State Department of Health
Understanding And Caring For Your Sand Filter System

Washington State University Cooperative Extension Service
Septic tanks with gravity flow drainfields have been used for many years in areas not served by public sewers. Unfortunately, not all soil and site conditions are suitable for these conventional systems. However, to protect public health and water quality, alternative systems are often used in areas where conventional systems cannot assure compliance with state and local regulations. The intermittent sand filter is one alternative safe sewage treatment system. To protect public health and water quality, alternative systems are often used in areas where conventional systems cannot assure compliance with state and local regulations. The intermittent sand filter is one alternative safe sewage treatment system.

To Properly Care for Your Septic Tank:

1. Inspect your septic tank once every year and pump it when needed. If the tank is not pumped periodically, solids escaping from the tank will clog the pump and drainfield. Using a garbage disposal will increase the amount of solids entering the tank and require more frequent pumping.

2. Don’t flush harmful material into the septic tank. Never put materials such as grease, cooking oils, newspapers, paper towels, cigarettes, coffee grounds, sanitary napkins, solvents, oils, paint, or pesticides into the tank. For information on the proper disposal of hazardous household waste, call the Recycle Hotline, 1-800-RECYCLE.

3. Avoid using any type of chemical or biological septic tank additive. Such products are not necessary for the proper functioning of a septic tank, nor do they reduce the need for routine tank pumping.

To Properly Care for Your Pump System:

1. Check the pump chamber, pump, and floats every year and replace or repair worn or broken parts. Pump maintenance should follow the manufacturer’s recommendations. Electrical parts and conduits should be checked for corrosion. If the alarm panel has a “push-to-test” button, it should be checked regularly.

2. Install a septic tank effluent filter or pump screen if your system does not have one. Screening or filtering the septic tank effluent provides an effective way of preventing solids from clogging the pump and drainfield pipes. Inspecting a screen or filter, and cleaning it when necessary, is quick and easy and prevents costly damage from solids entering the system.

3. Protect the drainfield from overloading after a prolonged power outage or pump failure. Effluent will continue to collect in the pump chamber until the pump starts operation. With additional effluent in the chamber, the pump may dose a volume more than the drainfield can handle. If all of the reserve storage in the chamber is used, the plumbing in your home can backup. When the pump is controlled by float controls and is off for more than 6 hours, the following measures can be taken to help protect the drainfield (timer controls will automatically correct this problem):
 a. Reduce your water use to a minimum.
 b. Turn off the pump at the control panel.
 c. After power is restored or pump service is completed, switch the pump on and let it run for 5 minutes maximum, and turn it off again. Repeat this manual switching every 6 hours until the effluent drops to the “OFF” float level and the pump turns off automatically. If there is little water use during the problem, the pump may automatically turn off during the first manual switching.

CAUTION: Always turn off the power supply at the circuit breaker and unplug all power cords before handling the pump or floats.

Do not enter the pump chamber. Gases inside pump chambers are poisonous and the lack of air can be fatal. The service or repair of pumps and other electrical equipment must be done by an experienced person.
Publication: Understanding and Caring for Your Sand Filter System

DOH Pub #: 337-089

Printing instructions:
To print this publication from a desktop printer, do the following:

- From the File menu, go to Print.
- Under Page Scaling, select None.
- Under Properties, select the following:
 Paper size: legal; Orientation: landscape; Print on both sides: flip over or flip on short edge.

When printing is finished, fold pages in half and then in half again to form a 3.5 x 8.5” brochure.