

INTRO TO GREENHOUSE GAS EMISSIONS

Weather vs. Climate

- "Climate is what we expect, weather is what we get."
 - Mark Twain
- Weather refers to the day-to-day changes in temperature, precipitation, etc. at a specific location
- Climate refers to the average of these variables over long time periods
- Individual weather events, especially extreme
 events, do not prove (or disprove) climate change

Climate Science History

- □ 1824 French physicist, Fourier,
 notices warming in relation to atmosphere
- By 1900 "greenhouse effect" studied in reference to CO2
 - First analysis done on human-made carbon emissions and Earth's temperature
- Several hypotheses tested and rejected:
 - Changes in Earth's orbit
 - Ice age theory
 - Sunspots

Climate Science History

- 1979 US National Academy of Sciences finds it "highly credible" that CO2 capable of causing dangerous levels of warming
- □ Early 80's scientific consensus grows
- 1988 The UN creates the Intergovernmental Panel on Climate Change (IPCC)
- 1992 Earth Summit in Rio de Janeiro (signed by HW Bush)
- 1997 Kyoto Protocol sets emissions reductions US does not act
- 2010 Obama administration acknowledges need for climate legislation – none

- There are 6 greenhouse gases that contribute to global warming:
 - Carbon Dioxide (CO₂)
 - Methane (CH₄)
 - Nitrous Oxide (N₂O)
 - Hydrofluorocarbons (HFC)
 - Perfluorocarbons (PFC)
 - □ Sulphur Hexafluoride (SF₆)

There are 6 greenhouse gases that contribute to global warming:

- Carbon Dioxide (CO₂)
- Methane (CH₄)
- \square Nitrous Oxide (N₂O)
- Hydrofluorocarbons (HFC)
- Perfluorocarbons (PFC)
- Sulphur Hexafluoride (SF₆)

BUT... They are not created equal: each one is capable of capturing different amounts of heat from the sun's energy — this amount is its "Global Warming Potential"

Gases

- □ Carbon Dioxide (CO_2) is the most plentiful of the gases and holds the least amount of heat energy. That is why it is used as the standard against which all else is measured.
- Example:
- \Box 1 ton of Methane (CH₄) = 21 tons of Carbon Dioxide (CO₂)
- Therefore the Global Warming Potential of Methane is 21
- This is why we say "1 ton of Methane = 21 tons of carbon dioxide equivalent".

Gases

- \square Carbon Dioxide (CO₂)
- \square Methane (CH $_{\scriptscriptstyle 4}$)
- \square Nitrous Oxide (N₂O)
- Hydrofluorocarbons (HFC)
- □ Perfluorocarbons (PFC)
- □ Sulphur Hexafluoride (SF₆)

Global Warming Potentials

- □ 1 (it's the standard)
- \square 21 times more powerful than CO_2
- \Box 310 times more powerful than CO_2
- □ Up to 12,000 x co₂
- \square Up to 12,000 x co₂
- □ 23**,**000

 $\mathbf{X} \quad \mathsf{CO}_2$

CO₂ is used as the standard – measured in Metric Tons of Carbon Dioxide Equivalent (MTCDE)

Example:

When burned, fossil fuels create a large amount of CO2, a little CH4 and tiny amount of N2O. Measuring the gasoline used by a vehicle fleet would look something like:

Gas	Amount (metric tons)	Multiplied by	Global	Warming	Potential = MTCDE	
CO2	10,000	Χ	1	=	10,000	
CH4	10	X	21	=	210	
N2C	0.1	X	310	= +	31	
This number is the total emissions					10,241 MTCDE	

(Metric Tons of Carbon Dioxide Equivalent)

Global Carbon Emissions

U.S. Carbon Emissions

Impacts for Washington State

For additional information on this topic see the University of Washington Climate Impacts Group: http://cses.washington.edu/cig/

Expected Regional Changes

Climate Impacts
Group

NOAA

International
Panel on Climate
Change

NASA

Hydrology Data Specific to Thurston County

- Decreased mountain snowpack / Earlier snowmelt
- Decreased water for irrigation, fish, and summertime hydropower production
- Increase in high snow forests Decrease in dry forests
- Potential increases in forest fires
- Potential loss of biological diversity if environmental shifts outpace species migration rates
- Increased coastal erosion, landslides and groundwater flooding due to increased winter rainfall
- Permanent inundation, especially in south Puget Sound around Olympia

Salmon and Aquatic Ecosystems

August Mean Surface Air Temperature and Maximum Stream Temperature
Historical (1970-1999) 2040s medium (A1B)

Compared with 1970-1999 average

Summary

- Science suggests we must END fossil fuel dependence
 AND decrease the CO₂ already in the atmosphere within approximately 50 years
- □ If nothing is done WA Dept. of Commerce expects
 \$6.5 Billion in annual costs / loss by 2040:
 - Increased Energy costs
 - Increased Health costs
 - Reduced ability to Hunt, Fish, Ski, etc...
 - Increased Coastal and Storm Damage
 - Reduced Food Production
 - Increased Wildfire costs

QUESTIONS?
CONTACT JOHN DRUELINGER
DRUELIJ@CO.THURSTON.WA.US
360-754-4109